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Abstract

This work analyzes the relationship between the shear relaxation modulus of entangled, linear and flexible homopolymer blends and its
molecular weight distribution (MWD) when a fraction of the sample contains chains with molecular weight M lower than the effective
critical molecular weight between entanglements Mc.g. This effective critical parameter is defined in terms of the critical molecular weight
between entanglements M. of the bulk polymer that forms the physical network and the effective mass fraction We.g of the unentangled
chains. In the terminal zone of the linear viscoelastic response, the double reptation mixing rule for blended entangled chains and a modified
law for the relaxation time of chains in a polydisperse matrix are considered, where the effect of chains with M < Mc, is included. Although
chain reptation with contour length fluctuations and tube constraint release are still the relevant mechanisms of chain relaxation in the
terminal zone when the polydispersity is high, it is found that the presence of a fraction of molecules with M < Mc.g modifies substantially
the tube constrain release mode of chain relaxation. In this sense, a modified relaxation law for polymer chains in a polydisperse entangled
melt that includes the effect of the MWD of unentangled chains is proposed. This law is validated with rheometric data of linear viscoe-
lasticity for well-characterized polydimethylsiloxane (PDMS) blends and their MWD obtained from size exclusion chromatography. The
short time response of PDMS, which involves the glassy modes of relaxation, is modeled by considering Rouse diffusion between entangle-
ment points of chains with M > Mc.. This mechanism is independent from the MWD. The unentangled chains with M < Mc.g occluded in
the polymer network also follow Rouse modes of relaxation although they exhibit dependence on the MWD. © 2002 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

Polymer melts are characterized, basically, through the
macromolecular statistics of the polymer matrix. These
statistics depend on the specific formulations of polymer
blends, and involves typically the mass average molecular
weight, M, the number average molecular weight, M,
giving a polydispersity P, = M,,/M,, = 1, and the molecu-
lar weight distribution (MWD) expressed through the
density distribution function (DDF) f,,(M). In this work
this DDF is based on mass fractions.

In the last decade, several studies have been carried out to
find a relationship between the relaxation modulus G(¢) of
linear viscoelasticity with f, (M), when all the chains are
long enough to conform an entangled polymer melt [1-4].
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All these works consider the particular case in which
M > M., where the critical molecular weight required to
form a physical network is M, =2M.. Here M, =
pRT/G% is the average molecular weight between two
consecutive entanglements, p the polymer density, T the
absolute temperature, R the universal gas constant and Gf\)l
is the plateau modulus of the undiluted entangled polymer
melt.

The interplay between the MWD and the retardation
spectra for the case of homopolymer blends containing a
significant fraction of unentangled chains of low molecular
weight (M < M_) was considered by Orbon and Plazek for
different bimodal blends [5]. In this study different mechan-
isms of chain relaxation were analyzed. More recently,
several works have presented theoretical developments for
the same type of blends where a relation between G(f) and
fw(M) was considered in a wide range of molecular weights,
from the terminal to the glassy zones of the viscoelastic
material [6-8].
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At present, the aim of this subject is to find a complete
theory able to predict the relaxation of shear stress within
the linear viscoelastic response when the polymer blend
contains a fraction of homopolymer chains with molecular
weight lower than the critical molecular weight between
entanglements. This is due, in part, to the lack of a complete
knowledge of the relaxation law A(M) that relates the
relaxation time A of a polymer chain with its molecular
weight M, when the surrounding polymeric matrix is rather
complex (polydisperse and diluted with short chains). For
monodisperse polymers and M > M., it is known that A, =
KrMb with b ~ 3.4, and the chain relaxation is controlled
mainly by reptation with contour length fluctuations [9,10].
For high values of P,, several studies showed that an
effective relaxation time of chains is required. When this
effective relaxation time is taken into account, a good agree-
ment between theory and experimental data is obtained
[1,3]. The effect of unentangled chains occluded in the
melt has been much less analyzed [5]. It is known, however,
that small chains should affect significantly the relaxation
time of long chains apart from the dilution effect yielded on
the plateau modulus. In the asymptotic case for concentrated
entangled solutions, the effective plateau modulus G§i' and
the effective critical molecular weight between entangle-
ment Mc.; follow power law dependencies as functions of
the polymer volume fraction ¢. This particular case has two
aspects that make less difficult and more tractable the search
for correlations of G&f and Mc. with ¢: (a) the presence of a
low molecular weight solvent, the value of which is much
smaller than M, of the entangled polymer, (b) the polymer
volume fraction ¢ is composed of chains with molecular
weights substantially higher than M.. Therefore, the evalua-
tion of an effective volume fraction of the entangled poly-
mer chains @ corresponding to chains with M > Mc is
not required. In this sense, Raju et al. [11] and Marin et al.
[12] found that G¥' = GR¢** and Mcyy = M, > for
narrow MWDs of different linear and star polybutadienes,
polystyrenes and polyisoprenes in several low molecular
weight solvents (diluters). For the case proposed here, the
dilution of the entangled polymer chains is formulated in
such a way that the whole MWD covers the right and left
ranges of M around M, (also around Mc.y). Consequently,
the short chains of the homopolymer added have a signifi-
cant effect on the melt elasticity as well as on the MWD,
apart from modifying the chain segmental mobility
(solvents modify this last property only). This implies that
in addition to the evaluation of the effective Mc.y, the
corresponding effective volume fraction ¢.; of polymer
must be also found due to the shift M, — Mc of the critical
molecular weight between entanglements, which is a direct
consequence of the interplay between unentangled and
entangled chains. Thus, due to the addition of unentangled
homopolymer chains to the entangled chains covering the
range around M., a fraction of entangled chains becomes a
part of the unentangled polymer fraction. The extension of
these concepts to homopolymer blends (valid for concen-

trated entangled solutions) is considered a first approxima-
tion at this stage. This aspect will be discussed with more
detail in the Section 4.

The problem placed in this work has both theoretical and
practical importance. One involves the relationship between
the MWD and rheological responses of plasticized blends of
high P,, in order to understand better the complex depen-
dence of rheological parameters and rheometric functions
on the MWD represented either through f,, (M) or its
moments. In fact, simple relationships involving the first
moments like M,, and M, (alternatively P,) may be found
only under very special physical conditions and rather ideal
topological constraints in the network microstructure. The
other consideration consists, for instance, of understanding
the formulation of hot-melt adhesives by adding to the basic
polymer a tackifying resin to soften and improve the tack of
the compound [8].

Therefore, the purpose of this work is to study polydis-
perse polydimethylsiloxane (PDMS) homopolymer blends
containing a significant fraction of unentangled chains of
low molecular weight (M < Mc.y), either theoretically
and experimentally, as an extension to previous works
[5,6-8,11,12]. Since the effect of polydispersity and
unentangled chains on the relaxation modulus is still an
important problem of practical interest that must be solved
from fundamental principles [6], we briefly reconsider first
the theoretical framework by analyzing the sequence of
relaxation mechanisms associated with both the physical
network and the unentangled fraction. Then, a description
of the experimental program characterizing these samples
via rheology and size exclusion chromatography (SEC) is
presented in detail. Finally, a comparison between numer-
ical predictions from theory and experimental data concern-
ing G(¢) is carried out to find out the relevant mechanisms of
chain relaxation and to discuss some aspects for further
research on the subject. Results related to the prediction
of MWD and P, are also presented for the samples studied
in this work.

2. Theoretical background

Since the PDMS blends analyzed in this work contain a
significant fraction of molecules of low molecular weight
(M < M.,) it is convenient to split the DDF into two parts.
For this purpose it is required to introduce an effective criti-
cal molecular weight Mc.; which accounts the presence of
the fraction of unentangled chains [8,13]. Thus, one can
define Mcogs = M.(1 — Weer)~® (8 = 1.25 for concentrated
solutions) where Wc. is associated with the effective mass
fraction of chains with M < Mc., and it can be estimated as
indicated in Section 3. Here, Wc.4 has the same value as the
volume fraction (1 — @) because a homopolymer blend is
considered. In this context of analysis, the DDF of chains
composing the entangled polymer chains (physical network)
is designated f\E(M). The other is f‘[,vJ (M) and gives the
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statistics of the unentangled chains with M < Mc.g. There-
fore, both DDFs must be normalized individually as
follows:

In Mcg
J, foHdInM =1 (1)
J: . fEondinm = 1. )

These DDFs can be readily converted to the global DDF
fw(M) obtained from the classical SEC technique, as it is
described in Section 3. Egs. (1) and (2) indicate that two sets
of relevant statistical parameters are obtained for the two
polymer fractions. Thus, M% and M, are the mass average
molecular weights of the entangled and unentangled chain
fractions, respectively. Similarly, we also define and
evaluate the polydispersities P5 and PY and the number
average molecular weights My and M, for later use,
where throughout this work the super indexes E and U
refer to entangled and unentangled chain fractions, respec-
tively. Consequently, we can define different contributions
to the relaxation modulus G(#) from each monodisperse
fraction of the blend, as they are described later [8].

2.1. Contribution of entangled chains to the relaxation
modulus

The relaxation modulus of flexible, linear and monodis-
perse polymer chains with M > Mc.g is described through
the double reptation mixing rule [14,15]

G [* o .
| G _JlnMceﬁ-[eXp ( ZAN(M))]fW(M)dlnM ©)

where Gefo = G% (1 — Wee)” is the effective rubbery

plateau of the diluted or plasticized physical network. In
Eq. (3), the dilution effect of the unentangled chains has
been accounted through the term (1 — We)”. The exponent
v takes values between 2 and 2.25 for concentrated
solutions [8]. In Eq. (3), An(M) is the maximum relaxation
time of a monodisperse fraction expressed as function of M.
This function, designated relaxation law in this work, must
be found taking into account both effects: high polydisper-
sity values of the polymer and the presence of a fraction of
molecules with M < Mc., the mass fraction of which is
Weer. The relaxation of any monodisperse polymer fraction
of the blend is approximated, in Eq. (3), to a single
exponential function of time ¢ as in previous works [1,3].

Eq. (3) is valid for the long time response (terminal zone)
and can be used to fit experimental data of G(¢) for t > 1,
where ¢, = 1/w, and w. is the frequency at which the relaxa-
tion moduli of dynamic rheometry satisfy G'(w,) = G"(w,).
Thus, up to frequencies in the vicinity of w., Eq. (3) is the
most relevant contribution to the relaxation modulus in the
frequency domain.

In general, Gf' is masked by the glassy modes that
become evident after the cross over frequency. These

modes may appear in the rubbery plateau when the dynamic
test is carried out on a polymeric sample of high P, contain-
ing an unentangled chain fraction. In this work, G§' is
obtained from the cross over of dynamic moduli G'(w)
and G”(w) which are measured experimentally as described
later [16]. For this purpose it is known that Gy =
2.0x10° Pa at 20°C for PDMS chains forming the
undiluted physical network [17].

For the more general situation considered in this work,
the relaxation law used in Eq. (3) must include the effect of
short chains associated with the unentangled chain fraction.
Therefore, the relaxation law described previously for high
P, samples [3] is modified in the present work in order to
consider this new system. Thus, it is well-known that the
relaxation law for reptation with contour length fluctuations
does not apply to polydisperse samples (e.g. P, > 2). In fact,
for binary blends of linear homopolymers, another relaxa-
tion mechanism exists, which is designated tube constraint
release (also known as tube renewal in the literature). When
M > §, this relaxation time A(M, S) can be expressed as,

AS) ( M \©
Sh (Me ) '

MM, S) = “)
Thus, the polymer matrix that forms the tube has a
molecular weight S and relaxes proportionally to A, (repta-
tion with contour length fluctuation) corrected by a factor by
[18-21]. The exponent « in Eq. (4) indicates that the
confined chain follows the tube constrain release through
Rouse to Zimm modes of relaxation. Additionally, Green
and Kramer [22] generalized this result to describe
unentangled matrices (S < Mc.g) and found

A, o< SM? (5)
when Rouse modes were still important and
A o< SM'? (6)

for the case of high dilution effects, i.e. for Zimm modes.
From Egs. (5) and (6), it is clear that when an unentangled
chain fraction is occluded in the entangled polymer melt, an
additional relaxation mechanism for the M-chain associated
with the tube constraint release can be expressed,

A o< SM® 7)

where S < Mc. and M > Mcy.

In practice, the two fractions composing the sample are
polydisperse in general, then PS> 1 and P > 1. Thus, for
polydisperse polymers, we cannot use directly Egs. (4) and
(7) to describe the tube release mechanism. In fact, the
expression for the global relaxation time of an M-chain in
a polydisperse matrix with an occluded fraction of
unentangled chains may be expressed as Ay = Ay (M,
f“E,(M), f\},] (M)) where the DDF of both polymer fractions
are considered now. Following our previous work [4], the
global relaxation time of a chain is accounted through two
parts: one involves reptation with contour length fluctua-
tions and the other is a consequence of the tube renewal
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effect, which is important when the polydispersity of the
sample is substantially high and when unentangled chains
are present in the network. Since it is possible to assume that
the macromolecular diffusion in both processes (reptation
and tube renewal) are additive and relaxation times scale
inversely with diffusion coefficients [23], an approximation
for the global relaxation time can be obtained [1]

A (M)
A (M) ®)
(M. FEM). fO )

where A, and A, are the reptational and the tube renewal
relaxation times, respectively. The tube renewal is now
dependent on both f‘S(M) and ij (M) and it is also clear
that the global relaxation time of a chain in a polydisperse
matrix shall carry information on the MWDs of both the
entangled and unentangled chain fractions.

Eq. (3) cannot be solved for G(r) with Eq. (8) without an
appropriate expression for A, = A, (M, f\E(M), f‘y (M)).
Therefore, since the average diffusion of the polymer matrix
may be defined as the weight average of the diffusion coef-
ficients of each monodisperse fractions, the expression for
A = A (M, FEM), £9 (M) is obtained from Eqs. (4) and (7)
pairwise averaged with the DDFs, as follows [3]

: - [ $)dIn s
At(M’f“];(M)’f\}vj(M)) o In Mey K{Sb*bkMa

(M. £ M), £ (M) =

n Mewr £U(§)d In S
+ J fu(8)dIn§ )
— K{/SMC(
to obtain from Eq. (8) the global relaxation time,
INUNSIONT)
_ KM’
o0 E In Mcyr £U
1+ tMegM"™¢ J W +J fu(8)dIn§
In Mgy ~ S77 % C S
(10)

where the constant values are approximated according to
K, = K| = K,/zMeS; with Me g =~ Me /2.

In addition, in the high frequency range, the sample
experiences the re-equilibration of monomers between
fixed entanglement points. This process does not depend
on the overall chain length and it can be described as a
Rouse relaxation of the monomeric fractions of the
entangled chains. This physical aspect also indicates that
for the short time response, i.e. for ¢ <<f., there is an
additional contribution of the physical network to the
relaxation modulus involving chains with M > Mc.g. This
contribution, designated here as Gg(#), does not depend on
the MWD of chains and can be expressed as [8]

Ge(t) = G° exp(—/\—tE) (1)

where the constant G° = Gg (1 — Wcey) is the contribution

of the effective glassy modulus and Ag = KRMegff is the
Rouse relaxation time of the chain portions comprised
between two consecutive entanglements. Here, Gg is the
contribution to the Rouse glassy mode of the undiluted
physical network [13]. Eq. (11) is generally neglected
when homopolymer blends have the MWD in the range
M, < M < oo (there is not an unentangled chain fraction)
and the experimental range considered is t > ., as it is the
most frequent case reported in the literature when polymer
melts are studied.

In addition, for relatively high frequencies, starting from
around the cross over frequency, the polymer experiences
the re-equilibration of segments along the overall chain.
Thus, the chains recover its natural curvilinear monomer
density through the slip-links, which keep the relative posi-
tions approximately fixed. This microstructural phenom-
enon has also associated a Rouse mode of relaxation, but
now, the whole length of the chain is involved. Viovy
reported an expression describing this relaxation process
[24]. In the linear viscoelastic response (small shear strain)
the re-equilibration of segments along the overall chain can
be neglected as described by Doi and Edwards [10].

2.2. Contribution of the unentangled chain fraction to the
relaxation modulus

The unentangled chain fraction can be considered
occluded in the physical network acting as a solvent of
relatively high molecular weight, which is still less than
Mc.;. Therefore, one expects a contribution of Rouse type
to the relaxation modulus designated here Ggr(f) and
expressed as [6,7]

GR(l) B In Mcg 3 t U
e —J_m exp( m)fw(M)dlnM (12)

where Ag = KRM2 indicates that the occluded chain fraction
(M < Mc.y) follows the Rouse mode of relaxation. There-
fore, Eq. (12) applies only for short times, viz. for t < ¢, =
lw..

3. Experimental

Nine polydisperse homopolymer blends containing a
significant unentangled chain fraction of low molecular
weight (M <M., and hence M < Mc.;) were prepared
from 11 commercial PDMS samples (Table 1) by mixing
the proportions indicated in Table 2. All the polymers and
blends were characterized using SEC in a Waters model 440
Liquid Chromatograph at room temperature. Toluene was
used as mobile phase at a flow rate of 1 ml/min. A set of four
PL gel columns (500, 10°, 10* and 10° A) was employed.
Number and weight average molecular weights (M, and M)
of the linear polymers were obtained by calibrating the SEC
columns with narrow MWD polystyrene (PS) standards
(Press Chem. Corp.). Benoit universal calibration [25] was
used and the Mark—Houwink constants for PDMS and PS in
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Table 1

Commercial PDMS samples used to prepare polydisperse homopolymer
blends containing a diluent fraction of low molecular weigth (M < M) as
reported in Table 2

Polymer M, (Da) M,, (Da) P, =M,IM,
PDMS-A 5000 11 900 2.38
PDMS-B 7 900 22 100 2.80
PDMS-C 22 500 35900 1.60
PDMS-D 35 300 55 500 1.57
PDMS-E 41 500 64 400 1.55
PDMS-F 46 300 70 900 1.53
PDMS-G 51 800 83 700 1.62
PDMS-H 72 600 111 200 1.53
PDMS-I 101 100 144 700 1.43
PDMS-J 108 900 250 900 2.30
PDMS-K 331 800 505 700 1.52

toluene at 20 °C were obtained from the literature [26]. The
adopted values for the Mark—Houwink constants were
K=416x10" dl/gand a = 0.788 for PS and K = 2.43 X
1072 dl/g and a = 0.84 for PDMS. The resulting molecular
weights are reported in Tables 1 and 3 [27].

Rheological measurements of the PDMS samples were
carried out in a Rheometrics Dynamics Analyzer RDA-II
at temperatures ranging from —40 to 150 °C. Shear flow was
obtained by dynamic tests using 25 mm diameter parallel
plates. Strain sweep tests were performed for the different
samples at predetermined temperatures and frequencies in
order to determine the operable strain range where linear
viscoelasticity is achieved. The storage G’ and the loss G”
moduli were measured for frequencies ranging from 0.05 to
500 s~'. Master curves for G’ and G” were obtained using
the time—temperature superposition principle at 20 °C as
reference temperature [17]. With this procedure the range
of measured frequencies was increased by almost two
decades.

Numerical values of G(¢) versus ¢ are obtained from the
viscoelastic spectrum evaluated with experimental data of
moduli G'(w) and G”(w) and the use of Fourier transform to
convert frequency  to time ¢ in the interrelations between
functions. For this purpose, the generalized Maxwell model
in the asymptotic limit of small shear strains is used to

Table 2

3039

process the experimental data obtained from the mechanical
spectrometer. At this step, G is determined and Wey and
Mc.; are calculated.

4. Results and discussion

Numerical values of G(t) obtained in Section 3 are fitted
with the equations modeling the relaxation modulus
(Egs. (3), (11) and (12)). The numerical problem thus gener-
ated is nonlinear and it has to be solved iteratively through
an algorithm described elsewhere [4,28] (also see Appendix
A). In this sense, sets of values {M;} with dimension N for
each one of the relaxation modulus Gy(#) and Gg(?)
described before are defined, where the molecular weights
are equally spaced in the decimal logarithmic scale. The
resulting number of modes yielded by the numerical
solutions minimizes the errors in the process of fitting
Egs. (3), (11) and (12) to numerical data of G(¢). In our
calculations, these errors are less than around 0.5% when
the model prediction of G(#) and its value obtained from
rheometry are compared. In this numerical algorithm, the
predictions of polydispersities and mass average molecular
weights shall approximate the values M%, My, PE, and PY
calculated from data provided by SEC (see Table 3). We
point out here that with the solution of this numerical
problem, the molecular parameters «, by, K;, z, and Ky are
determined together with an estimation of f,, (M), and hence,
the expressions for the relaxation times Ay = Ay (M, fE(M),
f\y (M)) and A\ = KRM2 are available. It is also found that
a = 2 and b = 0.5 for the nine blends considered and these
values were within the expected physical ranges described
before [4]. Tables 4 and 5 present the numerical values of
the molecular parameters for these samples. In these tables,
the weight average molecular weights and polydispersities
obtained from SEC are also reported for comparison with
the theoretical predictions.

From the theory analyzed before and the proposed relaxa-
tion time of the physical network, it is clear that the total
relaxation modulus G(7) is the sum of different expressions:
Gn (1), Gg(1), and Gg(?). In this sense, Figs. 1 and 2 show that
model predictions are in good agreement with numerical

Composition of the polydisperse homopolymer blends containing a diluent fraction of low molecular weight (M < M.)

Blend Weight percentage of each commercial PDMS sample (w/w%) in the blends
PDMS-A  PDMS-B PDMS-C  PDMS-D  PDMS-E  PDMS-F  PDMS-G  PDMS-H  PDMS-I  PDMS-]  PDMS-K

Bl 12.7 12.7 7 7 7 7 7 7.2 7 12.7 12.7
B2 15 15 7 7 7 4 4 4 7 15 15
B3 20 16 8 8 2 2 2 8 8 10 16
B4 18 15 9.9 9.9 - - 6.9 7.1 15 18.2
B5 50 - - - - - - - 50
B6 30 - - - 40 - - - - - 30
B7 20 - - - 30 - - - - 30 20
B8 19.8 19.8 - - 19.8 - - - - 19.8 20.8
B9 393 - - - - - 30 - - - 30.7




3040 J.A. Deiber et al. / Polymer 43 (2002) 3035-3045

Table 3
SEC characterization and deconvolution values of M,, and P, for the homo-
polymer blends

Blend M, (Da) P, =M,/M,

SEC Deconvolution SEC Deconvolution

My ME Py PE

Bl 136 900 20 300 244 300 796  2.26 2.01
B2 150 600 22 600 306 400 9.02 233 1.98
B3 143400 21200 303 200 8.44  2.09 1.95
B4 169200 22600 368 600 12.53  2.80 1.91
B5 253400 14800 532800 20.27 2.13 1.84
B6 198 700 21700 374700 10.63  2.19 2.27
B7 209 700 17 600 313200 10.81 2.33 2.13
B8 175000 22500 394700 1232 2.58 1.81
B9 161400 21900 372400 1242 272 1.80

data obtained from dynamic measurements. In these figures
the cross over time ¢, = 1/w, indicates the expected onset of
glassy modes.

Fig. 3 shows the estimation of f,,(M) that results from
the fitting procedure used to obtain the numerical curves
depicted in Fig. 1 for sample B5 and Fig. 2 for sample
B7. The predictions of the theory (full lines) are promising
in the sense that approximations to the expected shapes of
the DDF are effectively obtained. Here, it must be taken into
account that the inverse problem relating G(¢) and f,, (M) is
ill-posed [6]. Also, the shifts M. — Mc.; and W, — Wceg
belong to a phenomenon only described and correlated
empirically at the present time. Additional theoretical analy-
sis is required to consider the transition zone around Mc.g
where the mechanisms of chain relaxation are divided by a
sharp cut involving different chain dynamics for M < Mc
and M > Mc.g, as a first approximation. Although this cut of
the MWD facilitates the numerical analysis of the theory
evaluated in the present work, one should expect a transition
zone around Mc.g concerning the dynamic of chains.

We also found that the logarithmic plot of Ay = Ay (M,
fVE(M), f\y (M)) as function of molecular weight M shows
straight lines with a slope approximately equal to «. Thus,
the effective relaxation time of chains with M > Mc.; does
not present the transition from the predominant response

Table 4

involving reptation with contour length fluctuations (slope
equal to 3.4) to a relaxation controlled by the tube constraint
release when this slope approximates «. This transition is
typically found in polydisperse entangled polymers that do
not contain an unentangled chain fraction [3]. Therefore, it
is clear that the relaxation law described by Eq. (10) can be
approximated as follows for the nine blends studied in this
work:

(M. fo ). £ )
N K,M®
= © E In Mc, U
e fe®dInS v f9(S)dn S
N\ Jin My — SPTPx — S
= KitM* (13)

indicating that the presence of the unentangled chain
fraction modifies substantially the relaxation law of
entangled chains in polydisperse matrices. Thus, there are
not chains with M > Mc. in the entangled system (physical
network) that can follow Eq. (10) involving the asymptotic
expression Ay(M,fE(M),fS(M)) = K.M" at low values of
M, i.e. a fully reptation with contour length fluctuations
response is not found for the nine blends studied.

From numerical results carried out with Eq. (10), we also
conclude that the diluted entangled chains of the poly-
disperse blends studied here present higher values of the
relaxation time Ay than those obtained for the entangled
chains containing only molecules with M > M,. In fact,
the analysis of the values of K, (Table 4) indicates that Ay
increases substantially when a fraction of unentangled
chains is present. To visualize this result, one should also
observe two numerical aspects: (a) although Ay is propor-
tional to M with a < b for the microstructure of the blends
studied here, K, takes relatively high values, of the order of
1078 (undiluted entangled PDMSs have K, = 1072, as
reported by Peirotti et al. [4]), (b) the denominator of
Eq. (13) also increases for the case of diluted entangled
polymers (contribution of tube constrain release associated
to the fraction with M < Mc.g) but its value is not greater

Numerical values of molecular parameters related to Gy(#) for the blends studied in this work

Blend Numerical predictions Experimental data from SEC
K, G (Pa) ME (Da) PE ME (Da) PE
Bl 272%x10°% 273 % 10* 244 200 2.08 244 300 2.01
B2 222x1078 1.76 x 10* 306 400 1.99 306 400 1.98
B3 267%107% 1.89x 10* 299 300 2.03 303 200 1.95
B4 9.81x 1077 1.46 x 10* 369 600 1.92 368 600 1.91
B5 9.29%1077 1.68 x 10* 538 600 1.70 532 800 1.84
B6 9.78x 1077 1.01 x 10* 368 300 2.39 374 700 227
B7 9.86x 1077 2.85%10* 316 900 2.16 313 200 2.13
B8 9.33x 1077 1.18 x 10* 382 100 1.69 394 700 1.81
B9 240%10°% 1.01 x 10* 369 500 1.69 372 400 1.80
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Table 5

Numerical values of molecular parameters related to Gr(¢) for the blends studied in this work

Blend Numerical predictions Experimental data from SEC
Kx G’ (Pa) MY (Da) PY MY (Da) PY

Bl 2.88%x107"2 4.03%x10* 19 700 2.20 20 300 236
B2 1.74x 107" 7.26 % 10* 22 600 232 22 600 2.33
B3 3.73%x 10712 3.67 x 10* 20 100 1.93 21 200 2.09
B4 325x 10712 422 % 10* 22 200 2.82 22 600 2.80
B5 1.84% 107" 2.60 x 10* 14 600 233 14 800 2.13
B6 232x 10712 3.43 % 10* 22 100 232 21 700 2.19
B7 239x 10712 8.36 x 10* 17 700 2.44 17 600 2.33
B8 320x 107" 7.22 % 10* 22 800 2.60 22 500 2.58
B9 201x10°12 2.86 x 10* 22 000 2.61 21 900 2.72

enough to compensate the increment of K. These results are
consistent with experimental data showing that diluted
entangled PDMSs yield values for 7, = l/w, relatively
higher than those corresponding to the undiluted entangled
PDMSs analyzed previously [4].

We also found numerically that the power 6 becomes

(a)

3x10*
B1

— 2x10*F

G(t) (Pa

1x10° ¢

B4

G(t) (Pa)

1x10"

sensitive to the formulation of blends. Thus, our results
show that 6 = 1.6-1.7 for samples like B1 to B4, which
present two closed peaks in the DDF. For samples B6 to
B9, which have three peaks in the DDF, 6 = 1.8-2. On the
other hand, sample B5, having two separated peaks in the
DDF, yields a rather high value of this parameter, viz.

(b)
3x10°

2x10* |

G(t) (Pa)

1x10* |

(d)
3x10°

_ 210

G (Pa

1x10* |

d d d l ul ul
10° 10" 10° 10® 10" 10° 10" 107
t(s)

Fig. 1. Comparison between theoretical predictions of the relaxation modulus G() (full lines) and rheometric data generated by the Fourier transform
(symbols) for samples: (a) B1, (b) B3, (c) B4, and (d) B5. The cross over time 7, = 1/w, is indicated.
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(a)
3x10°

B6

2x10*

G(t) (Pa)

1x10*

(c)
3x10*

B8

2x10°F

G(t) (Pa)

1x10°F

(b)

3x10*
B7

2x10*

4

G(t) (Pa)

(d)
3x10°

2107

G(t) (Pa

1x10°T

t (s)

Fig. 2. Comparison between theoretical predictions of the relaxation modulus G(z) (full lines) and rheometric data generated by the Fourier transform
(symbols) for samples: (a) B6, (b) B7, (c) B8, and (d) B9. The cross over time 7, = 1/w, is indicated.

6 = 2.3. In this sense, further research concerning other
formulations of blends will be necessarily to elucidate the
relationship between & and the mass fraction of chains
composing the samples studied.

Finally, it is important to discuss our experimental results
in relation to the spectrum of relaxation time H(A), which
can be obtained from data involving G(¢) (Figs. 1 and 2). In
this context of analysis we show in Fig. 4 the relaxation
spectrum of samples B4, B5, and B7. In this figure, sample
B5 is an important reference point, since it is a bimodal
blend with 50 wt% of the lower molecular weight compo-
nent (acting as solvent) and the other 50 wt% of the higher
molecular weight component (see Table 1). Since the
relaxation spectrum can be inter-converted with the retarda-
tion spectrum, the three peaks observed for this sample in
Fig. 4 can be associated directly to peaks A, B and C
discussed previously by Orbon and Plazek [5]. Thus, we
find a complete agreement with the results found by these
authors in the sense that peak A corresponds to the relaxa-
tion of the unentangled chains with M < Mc.g occluded in

the physical network (see Eq. (12)), peak B is associated
with glassy modes of relaxation involving only the parts of
long chains comprised between entanglement points
(M > Mc.z) (see Eq. (11)). In addition, as one should
expect, peak C is related to the relaxation of the entangled
chains in the network (see Eq. (3)). It is also interesting to
point out here that the manifestation of peak A not only
depends on the MWD and the amount of the low molecular
weight fractions in the blend but also on the type of polymer
under consideration. For instance, Orbon and Plazek
resolved peak A in a shoulder type due to the low value
of the orientational coupling constant, which is around
0.26 for the polystyrene oligomers they have used (see
also Ylitalo et al. [29] for precise definitions and reported
values of this parameter). In the case of the PDMS blends of
our work, the orientational coupling parameter is around
unity and hence the peak A reported in Fig. 4 is neatly
observed. Samples B4 and B7 reported in Fig. 4 also
presents a significant peak A because the low molecular
weight fraction of the blends are poly-modal and it is
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(a)
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0.3F

0.2}

f, (M)

0.1F

10° 107

(b)

B7

0.3

f, (M)

0.0F

10°  10° 10 10°  10° 10
M (Da)
Fig. 3. Model prediction of the DDF f, (M) as a function of molecular

weight M (full lines) for: (a) sample B5 (two peaks); (b) sample B7
(three peaks). Symbols refer to experimental data obtained from SEC.

A(s)

Fig. 4. Spectrum of relaxation times H(A) as a function of relaxation time A
for samples B4 (dashed line), BS (full line), and B7 (dotted line). Peaks A,
B, and C discussed in the text are indicated for sample B5.

present in a relative high volume fraction. All the samples
studied in our work present systematically the three relaxa-
tion peaks described before indicating that the relaxation
mechanisms proposed here and discussed previously by
Orbon and Plazek [5] are representative of polymer

networks having a low molecular fraction with a given
MWD.

5. Conclusions

The shear relaxation modulus of entangled, linear and
flexible blends containing homopolymer unentangled
chains presents different relaxation modes from those
found in the corresponding undiluted entangled homopoly-
mer. In this sense, in the terminal zone of linear viscoelastic
response, the double reptation mixing rule for blended
entangled chains applies with a modified law for the relaxa-
tion time of chains in a polydisperse matrix which includes
the effect of chains with M < Mc.s. The presence of the
unentangled chain fraction modifies substantially the tube
constrain release mode of chain relaxation and the constant
of proportionality K, associated with the reptation of chains.
The modified law of relaxation proposed validates rheo-
metric data of linear viscoelasticity for well-characterized
polydimethylsiloxane (PDMS) samples and their molecular
parameters obtained from SEC. Two short time responses of
PDMS (glassy modes) were considered both following the
Rouse chain diffusion. One describes the relaxation of
chains with M > Mc.g. This mechanism is independent of
MWD. Unentangled chains with M < Mc.¢ occluded in the
entangled polymer melt also follow Rouse modes of relaxa-
tion although they present a dependence on the MWD.
These results are consistent with previous analysis reported
in the literature for other polymer systems [6—8,11,12].

The effect of the unentangled chain fraction on the effec-
tive relaxation time of chains in the polydisperse physical
network is to eliminate the transition involving the values of
the universal constant b from 3.4 to « for increasing values
of M, typically found in high polydisperse entangled
polymer melts with a mass distribution greater than Mc.g.

Theoretical correlations involving the effective plateau
relaxation modulus Gﬁff and the effective critical molecular
weight between entanglements Mc.g with the effective poly-
mer mass fraction (1 — Wecyy) (or volume fraction )
presented previously for solvent diluted entangled polymers
were validated and extended to physical networks contain-
ing homopolymer unentangled chains.
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Appendix A

This appendix briefly presents the main steps followed in
this work to find the approximate solution of the problem
generated by the integrals of first kind (Egs. (3) and (12))
relating the relaxation moduli of blends and MWDs. These
steps are the following [28].

(a) The basic problem found in the determination of a
DDF from dynamic rheometry is,

In b
g() = L [K(t, Mr=aonfo(M)d In M (AD)

where the relaxation law A = A(M) and the kernel K(z, )
are functions specified together with the integral limits a
and b. In the inverse problem, one uses rheometric data
g(®) in Eq. (Al) to evaluate f,,(M). We first find a basic
solution of the problem placed by Eq. (Al) according to
Peirotti et al. [4]. The method uses

N
SoM) = a;5(M — M)
i=1

where 6;(M — M;) are Dirac delta functions and a; are
constant coefficients to be determined in the inversion
process. With the above formulation, numerical values for
the spectrum {a;} — {M;} with i = 1...W are found. In this
numerical algorithm, the prediction of polydispersity and
mass average molecular weight shall approximate the
values P, = M,,/M, and M,, obtained from SEC. With the
basic solution, the molecular parameters of the relaxations
laws for Ay and Ag used in each integral are determined
iteratively.

(b) The moments u, of f,(M) are independent of the
solution of the ill-posed problem because they are deter-
mined by the numerical data g(¢) [30]. Therefore, these
moments can be numerically calculated, through a DDF
obtained as a basic solution of Eq. (Al) within a small
numerical error. The moments of the distribution function
are

In b

Wy, = J’ (In M — {In M))"f,,(M)d In M
Ina

with

In b
(nM) = J In Mf,,(M)d In M.
Ina

The set of moments thus determined allows one to look for
the evaluation of f,,(M) according to the next step.

(c) In principle, a DDF can be fully determined from the
knowledge of its moments [31]. Having the moments from
the previous step, it is recommended to convert the DDF to
the standard mode by defining a new statistical variable & =
(In M — (In M))/o where o = /i, is the standard devia-

tion. Thus the moments of the standard DDF f(§) are
readily found to be 6, = w,/o" satisfying 6, =0 and
0, = 1. The standard DDF can be expanded in series of
Hermite polynomials H,(£) for n = 1...00, together with
the standard normal-DDF, a(§) = exp(—§2/2)/\/2_frr. There-
fore the following expression is obtained [31],

S ®=> c;H(Ha(d
=0
where

1 (>~ .
cu= o | R,
n: — 0

with n = 2K. Coefficients ¢, for n = 1...00, can be written
in terms of moments 6, through

[24]

1 LS kn
Cp = m{an + ]; (_1) ﬁon—Zk}'

The number of modes of this series shall be determined with
the constraints,

{(mefvi(g)dg) - 1} <105

and £, (&) + £ = 0, which allows one to cut the series at a
specific and optimum value of n. The first constraint is the
normalization of the standard DDF, while the second does
not allow the DDF to take negative values outside a small
negative range — g associated with typical numerical errors.
Therefore, one must calculate the series for high 7 to find the
solution that satisfies the proposed constraints.
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